11,737 research outputs found

    Physical aspects of computing the flow of a viscous fluid

    Get PDF
    One of the main themes in fluid dynamics at present and in the future is going to be computational fluid dynamics with the primary focus on the determination of drag, flow separation, vortex flows, and unsteady flows. A computation of the flow of a viscous fluid requires an understanding and consideration of the physical aspects of the flow. This is done by identifying the flow regimes and the scales of fluid motion, and the sources of vorticity. Discussions of flow regimes deal with conditions of incompressibility, transitional and turbulent flows, Navier-Stokes and non-Navier-Stokes regimes, shock waves, and strain fields. Discussions of the scales of fluid motion consider transitional and turbulent flows, thin- and slender-shear layers, triple- and four-deck regions, viscous-inviscid interactions, shock waves, strain rates, and temporal scales. In addition, the significance and generation of vorticity are discussed. These physical aspects mainly guide computations of the flow of a viscous fluid

    Computational aerodynamics and artificial intelligence

    Get PDF
    The general principles of artificial intelligence are reviewed and speculations are made concerning how knowledge based systems can accelerate the process of acquiring new knowledge in aerodynamics, how computational fluid dynamics may use expert systems, and how expert systems may speed the design and development process. In addition, the anatomy of an idealized expert system called AERODYNAMICIST is discussed. Resource requirements for using artificial intelligence in computational fluid dynamics and aerodynamics are examined. Three main conclusions are presented. First, there are two related aspects of computational aerodynamics: reasoning and calculating. Second, a substantial portion of reasoning can be achieved with artificial intelligence. It offers the opportunity of using computers as reasoning machines to set the stage for efficient calculating. Third, expert systems are likely to be new assets of institutions involved in aeronautics for various tasks of computational aerodynamics

    Flow in a two-dimensional channel with a rectangular cavity

    Get PDF
    Flow characteristics in two dimensional channel with rectangular cavit

    Potential application of artificial concepts to aerodynamic simulation

    Get PDF
    The concept of artificial intelligence as it applies to computational fluid dynamics simulation is investigated. How expert systems can be adapted to speed the numerical aerodynamic simulation process is also examined. A proposed expert grid generation system is briefly described which, given flow parameters, configuration geometry, and simulation constraints, uses knowledge about the discretization process to determine grid point coordinates, computational surface information, and zonal interface parameters

    Relative advantages of thin-layer Navier-Stokes and interactive boundary-layer procedures

    Get PDF
    Numerical procedures for solving the thin-shear-layer Navier-Stokes equations and for the interaction of solutions to inviscid and boundary-layer equations are described and evaluated. To allow appraisal of the numerical and fluid dynamic abilities of the two schemes, they have been applied to one airfoil as a function of angle of attack at two slightly different Reynolds numbers. The NACA 0012 airfoil has been chosen because it allows comparison with measured lift, drag, and moment and with surface-pressure distributions. Calculations have been performed with algebraic eddy-viscosity formulations, and they include consideration of transition. The results are presented in a form that allows easy appraisal of the accuracy of both procedures and of the relative costs. The interactive procedure is computationally efficient but restrictive relative to the thin-layer Navier-Stokes procedure. The latter procedure does a better job of predicting drag than does the former. In both procedures, the location of transition is crucial for accurate or detailed computations, particularly at high angles of attack. When the upstream influence of pressure field through the shear layer is important, the thin-layer Navier-Stokes procedure has an edge over the interactive procedure

    Uhlenbeck-Donaldson compactification for framed sheaves on projective surfaces

    Full text link
    We construct a compactification MμssM^{\mu ss} of the Uhlenbeck-Donaldson type for the moduli space of slope stable framed bundles. This is a kind of a moduli space of slope semistable framed sheaves. We show that there exists a projective morphism γ ⁣:MssMμss\gamma \colon M^{ss} \to M^{\mu ss}, where MssM^{ss} is the moduli space of S-equivalence classes of Gieseker-semistable framed sheaves. The space MμssM^{\mu ss} has a natural set-theoretic stratification which allows one, via a Hitchin-Kobayashi correspondence, to compare it with the moduli spaces of framed ideal instantons.Comment: 18 pages. v2: a few very minor changes. v3: 27 pages. Several proofs have been considerably expanded, and more explanations have been added. v4: 28 pages. A few minor changes. Final version accepted for publication in Math.

    Minimizing Higgs Potentials via Numerical Polynomial Homotopy Continuation

    Full text link
    The study of models with extended Higgs sectors requires to minimize the corresponding Higgs potentials, which is in general very difficult. Here, we apply a recently developed method, called numerical polynomial homotopy continuation (NPHC), which guarantees to find all the stationary points of the Higgs potentials with polynomial-like nonlinearity. The detection of all stationary points reveals the structure of the potential with maxima, metastable minima, saddle points besides the global minimum. We apply the NPHC method to the most general Higgs potential having two complex Higgs-boson doublets and up to five real Higgs-boson singlets. Moreover the method is applicable to even more involved potentials. Hence the NPHC method allows to go far beyond the limits of the Gr\"obner basis approach.Comment: 9 pages, 4 figure

    Various analytical models for supercapacitors: a mathematical study

    Get PDF
    Supercapacitors (SCs) are used extensively in high-power potential energy applications like renewable energy systems, electric vehicles, power electronics, and many other industrial applications. This is due to SCs containing high-power density and the ability to respond spontaneously with fast charging and discharging demands. Advancements in material and fabrication techniques have induced a scope for research to improve the application of SCs. Many researchers have studied various SC properties and their effects on energy storage and management performance. In this paper, various fractional calculus-based SC models are summarized, with emphasis on analytical studies from derived classical SC models. Study prevails such parameterized resistor- capacitor networks have simplified the representation of electrical behavior of SCs to deal with the complicated internal structure. Fractional calculus has been used to develop SC models with the aim of understanding their complicated structure. Finally, the properties of different SC models utilized by various researchers to understand the behavior of SCs are listed using an equivalent circuit

    Distance Product of Graphs

    Get PDF
    In graph theory, different types of product of two graphs have been studied, e.g. Cartesian product, Tensor product, Strong product, etc. Later on, Cartesian product and Tensor product have been generalized by 2-Cartesian product and 2-Tensor product. In this paper, we give one more generalize form, distance product of two graphs. Mainly we discuss the connectedness, bipartiteness and Eulerian property in this product
    corecore